
I I I I I

AIAA 2001-1552

Efficiency Improvements to the
Displacement Based Multilevel

Structural Optimization Algorithm

C. L. Plunkett and A. G. Striz

University of Oklahoma, Norman, Oklahoma

J. Sobieszczanski-Sobieski

NASA Langley Research Center, Hampton, Virginia

42nd AIAAIASMEIASCEIAHSIASC

Structures, Structural Dynamics, and
Materials Conference and Exhibit

16-19 April 2001
Seattle, Washington

For permission to copy or to republish, contact the copyright owner named on the first page.

For AIAA-heid copyright, write to AIAA Permissions Department,

1801 Alexander Bell Drive, Suite 500, Reston, VA, 201914344.





AIAA-2001-1552

EFFICIENCY IMPROVEMENTS TO THE DISPLACEMENT BASED

MULTILEVEL STRUCTURAL OPTIMIZATION ALGORITHM

C. L. PlunketC and A. G. Striz t

School of Aerospace and Mechanical Engineering

University of Oklahoma, Norman, Oklahoma 73019 (405) 325-1730 striz_ou.edu

J. Sobieszczanski-Sobieski _

NASA Langley Research Center, Hampton, Virginia 23665 (757) 864-2799

j.sobieski@LaRC.NASA.GOV

Abstract

Multilevel Structural Optimization (MSO)'-* continues to be an area of research interest in engineering

optimization. In the present project, the weight optimization of beams and trusses using Displacement based
Multilevel Structural Optimization (DMSO), a member of the MSO set of methodologies, is investigated. In the

DMSO approach, the optimization task is subdivided into a single system and multiple subsystems level

optimizations. The system level optimization minimizes the load unbalance resulting from the use of displacement

functions to approximate the structural displacements. The function coefficients are then the design variables.

Alternately, the system level optimization can be solved using the displacements themselves as design variables, as

was shown in previous research. Both approaches ensure that the calculated loads match the applied loads. In the

subsystems level, the weight of the structure is minimized using the element dimensions as design variables. The

approach is expected to be very efficient for large structures, since parallel computing can be utilized in the different

levels of the problem.

In this paper, the method is applied to a one-dimensional beam and a large three-dimensional truss. The

beam was tested to study possible simplifications to the system level optimization. In previous research, polynomials

were used to approximate the global nodal displacements. The number of coefficients of the polynomials equally

matched the number of degrees of freedom of the problem. Here it was desired to see if it is possible to only match

a subset of the degrees of freedom in the system level. This would lead to a simplification of the system level, with a

resulting increase in overall efficiency. However, the methods tested for this type of system level simplification did

not yield positive results.

The large truss was utilized to test further improvements in the efficiency of DMSO. In previous work,

parallel processing was applied to the subsystems level, where the derivative verification feature of the optimizer
NPSOL had been utilized in the optimizations. This resulted in large runtimes. In this paper, the optimizations were

repeated without using the derivative verification, and the results are compared to those from the previous work.

Also, the optimizations were run on both, a network of SUN workstations using the MPICH implementation of the

Message Passing Interface (MPI) and on the faster Beowulf cluster at ICASE, NASA Langley Research Center,

using the LAM implementation of MPI. The results on both systems were consistent and showed that it is not
necessary to verify the derivatives and that this gives a large increase in efficiency of the DMSO algorithm.

+ Graduate Research Associate, Member AIAA

± Professor, Associate Fellow, AIAA

Multidisciplinary Research Coordinator & Manager.

Computational AeroSciences, Fellow, AIAA

Copyright © 2001 by the American Institute of
Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S.

Code. The U.S. Government has a royalty-free
license to exercise all fights under the copyright

claimed herein for Governmental Purposes. All other

rights are reserved by the copyright owner.



Introduction

Early uses of structural optimization were

endeavored during World War II, when the need for

high performance aircraft led tO increased research in

this area. Today, with the use of modern computers,

structural optimization has become a more important

consideration in structural design. For static

structures, it is of interest to create an optimized

structure. This produces a minimum weight structure

and, thus, a minimum material structure, which

lowers the cost of producing the structure. For mobile

structures, an optimal design not only helps to lower

the cost of building the structure, it also helps to

lower the operating cost. Therefore, structural

optimization continues to be an important area of

research in transportation. In an effort to design the

lightest and most efficient structure for a given task

and vehicle, constraints from many different

disciplines must be considered, such as

aerodynamics, controls, cost, etc. The development

of a design that simultaneously satisfies all of these

criteria is often computationally complex. It is here

that Multidisciplinaw Design Optimization (MIX))

can provide mathematically based design tools to

obtain a minLmum weight structure that satisfies the

multifaceted constraints of multiple disciplines.

One approach to improve the MDO of

vehicles through more efficient structural
optimization is Displacement based Multilevel

Structural Optimization (DMSO, see Figure 1)TM. In

this approach, the op'tmaization task is subdivided

into a single system and multiple subsystems level

optimizations. The system level optimization

minimizes the load unbalance resulting from the use

of displacement functions to represent the

displacements of the structure. The function

coefficients are then the design variables of the

system level. The system level can also be solved

using the displacements themselves as design

variables. Both approaches ensure that the loads

calculated from a finite element analysis match the
applied loads. In the subsystems level, the weight of

the structure is minimized using the element

dimensions as design variables.

One-Dimensionai_ Two-Element Beam

In this paper, the method is applied to a one-

dimensional beam and to a large three-dimensional
truss. In previous research, z4 the same one-dimen-

sional, two-element beam was optimized (Figure 2).
The beam was fixed at both ends, and had a moment

of 10,000 in-lbs, applied 10" from the left end.

FORTRAN 77 programs, which utilized D(YI"5as the

Initialization

...--..¢

Select Initial Element Dimensions

Calculate Nodal Displacements from FEA

1
Subsystems Optimization

Minimize the Weight of Structure

Subject to: Nonlinear Stress Constraints

Design Variables: Element Oimemions

1
Pass Optimized Element[Dimemiom to System I

!

1
System Optimization

Minimize the Force Unbalance

Design Variables: Nodal Displacements

Figure 1. DMSO Algorithm

optimizer, were coded to perform the optimizations.

The original programs were formulated specifically

for the two-element beam and, therefore, could not be

used for a higher number of elements. The programs

were also written using the displacements as the

design variables in the system level optimization. In
this research, it was desired to reformulate the

optimization program for a general number of

elements, using a polynomial to approximate the

displacements. The coefficients of the polynomial

would be the design variables for the system level.

Once the general formulation was written, it was

evaluated versus the data from the original programs.

When the program was first tested, the first

subsystems optimization appeared to give good
results. However, the first system level optimization

would indicate convergence when the force un-

balance was on the order of 10 6. There appeared to be



X in.

M=I0,000in-lbs.

;I
30 in.

b

mh
beam

cross-section

Figure 2. One-Dimensional Beam Model

no error in the system level formulation, so the

problem appeared to be in the choice of optimization

parameters used by DOT. Tiffs problem was fixed by

restarting the optimization using the results of the

previous optimization as initial values. However,

each cycle would require on the order of 10,000
restarts since each restart only decreased the force

unbalance by a small amount. This also resulted in

an overall optimization time of as much as ten
minutes. This was remedied by utilizing the auto-

matic design variable scaling feature of DOT, which
re-scales the variables of the problem internally

within DOT at a predetermined number of iterations.
The default number of iterations is the number of

design variables. The combination of both, scaling
method and restarts allowed the optimization to

converge. With the automatic scaling, each cycle

required at most five restarts. This resulted in a
decrease in overall optimization time from several
minutes to less than a minute.

The final results agreed closely with the resnlts

obtained from the original formulation. The results

are given below in Tables l and 2. Table 1 gives the

optimized element widths obtained from the original
formulation, along with the total weight of the beam.

Table 2 gives the results obtained from the general
formulation.

Table 1. Two-Element One-Dimensional Beam Model: Original Formulation

(height = upper bound of 2 inches for all cases)

Nodal Coordinates

0, 7, 30

0, 9 r 30

0, I0, 30
0, 15,30

01 16 r 30

0, 18_ 30

0 r 20, 30
0,21, 30

0, 23, 30

Weight 0bs.)

1.922

Width

Element 1 (in)
0.2616

Width

Element 2 (in)
0.3383

1.948 0.2381 0.3618

1.915 0.2426 0.3573

1.800 0.3000 0.3000

1.805

1.845

1.915

1.948

0.3131

0.3381

0.3573

0.3618

0.33831.922

0.2868

0.2618

0.2426

0.2381

0.2616

Table 2. Two-Element One-Dimensional Beam Model: General Formulation

(height = upper bound of 2 inches for all cases)

Nodal Coordinates Weight Obs.)

O, 23, 30

Width

Element 1 (in)

0,7,30 1.925 0.2624

0,9,30 1.949 0.2403 0.3612

0,10,30 1.918 0.2449 0.3570

0,15,30 1.800 0.3000 0.3000

0,16,30 1.808 0.3131 0.2881

0,18,30 1.849 0.3380 0.2635

0,20,30 1.918 0.3572 0.2448

0,21,30 1.947 0.3612 0.2388
1.925 0.3387 0.2624

Width

Element 2 (in)
0.3387



One-Dimensional_ Multi-Element Beam

Previous results indicated the need for efficiency
improvements to the system level optimization. 4 In
the two-element formulation, a polynomial with the
number of coefficients equal to the number of
degrees of freedom of the structure was used to
approximate the displacements. This required a fifth-
order polynomial (six coefficients) to match the six
degrees of freedom of the two-element beam. It has
been proposed that the number of coefficients could
be decreased by not matching the load unbalance at
all degrees of freedom. This would decrease the
number of design variables and, therefore, the
complexity of the system level.

On a multi-element beam, the fixed end node
displacements can be artificially set to zero,
eliminating the need for having the polynomial
function describe the displacements at these end
nodes. Therefore, the same fitth order polynomial
could be used to describe the displacements for
problems with beams of up to four elements. Here,
however, a five-element beam problem was studied,
which could have its twelve degrees of freedom
reduced to eight, six of which could be matched by
the fifth order polynomial.

The program was modified so that it could
be specified in the input file, which of the eight
degrees of freedom would be matched in the force
unbalance. The beana was divided into elements with

the following node locations: 0, 5, 10, 15, 20, and
30". The load was applied to the node at 10". Since
the load was applied to this node, it is necessary to
match the force unbalance at this node. This left the

nodes at 5, 15, and 20" from which to choose the
unmatched node. When using any of the three nodes,
the resulting displacements for the first system level
optimization proved to be too inaccurate to allow the
formulation to converge to a final, correct solution.
Various formulations and approaches for the problem

all resulted in the same stalemate, leading to the
conclusion that the approach in its present form is not
feasible for the polynomial function or displace-ment
method. Extensive dala for this case are given in
Reference 6.

240-Element Truss Optimization

The large truss (Figure 3) was utilized to
test further efficiency improvements to the DMSO
methodology. Previously, 4 parallel processing bad

been applied to the subsystems level and gave
promising results. A network of SUN workstations
utilized MPICI-L an implementation of the Message
Passing Interface (MPI) _, for this purpose. The
optimizer NPSOL s was used for the optimizations.
However, the results indicated a considerable need

for efficiency improvement.

By default, NPSOL checks the user
provided gradients by finite difference approxi-
mations. In the current research, the approach was
tested without the gradient verification to see ff the
efficien_ could be improved. For the optimization, a
program was coded in Fortran 77 to employ the LAM
implementation of the MPI software on the Beowulf
cluster of Pentium-.based processors at ICASE,
NASA Langley Research Center.

The optimized truss weight for all cases is
given in Table 3. The average optimization level
runtimes with derivative verification are given in
Tables 4 and 5. The overall runtimes are given in
Table 6. The results are repeated without derivative
verification in Tables 7-9. Without verifying the
gradients, the average nmtime of the system level
decreased by as much as 60%, while that of the
subsystems level decreased by an average of 95%.
The percent decreases in overall runtimes are given
in Table 10.

,t

Figure 3. 240 Bar Three-Dimensional Truss Model



Conclusions

The results of the present study indicate that

the approximation of the displacement functions by

polynomials of lower order needs to be reexamined.

It should be possible to solve this problem by using

cubic splines, a Fourier series approach., or maybe

averaging techniques.

The results of the truss optimizafions

indicate that parallel processing can be effectively

applied to the DMSO methodology as a means of

increasing optimization efficiency. However, the

Jack of availability of parallel networks presently
limits the number of users who could obtain this

benefit. Therefore, it is desirable to utilize computers

connected through the intemet in addition to those

on parallel networks.

Future Work

This idea will be tested using MPICH on
SUN workstations at the University of Oklahoma

together with similar computers at other institutions.
It is of interest to see how the connection speed

between computers will affect the overall

optimization efficiency. Therefore, the approach will
be tested on connections on both the standard Internet
and Interact2.

It is also of interest to examine the

feasibility of having a user at a secondary site interact

with the program in some form. For testing purposes,
this will consist of having a remote user enter a

change in a problem parameter or variable during the
course of the optimization.

Table 3. Optimized Truss Weight

Truss Weight 0bs.)All Parallel Cases vs. Original Case ] 179.40 vs. 179.41

Table 4. Average Individual System Level Runtime with Derivative Verification

I System Design Variable Formulation

Polynomial Coefficients (Original)

Polynomial Coefficients (Parallel Subsystems)

Displa_ments
Gauss Elimination

Average Runtime
12.35 min

13.14 min

28.60 sec

6.57x 10 -2 sec

Table 5. Average Individual Subsystems Level Rnntime with Derivative Verification

Number of Processors

Non-Parallel

1 29.17 rain

2 1.05 min

3 12.48 sec

4 4.03 sec

6

8

10

Average Runtime
28.69 rain

1.56 sec

6.80x 10"1sec

2.35x 10"1sec

2.27x 101 sec



Table 6. Runtimes Observed in 240-Element Truss Optimization with Derivative Verification

a) Polynomial Coefficients as System Level Design Variables, Non-Parallel Subsystems

Time to Complete Optimization 8.89 hr I

b) Polynomial Coefficients as System Level Design Variables, Parallel Subsystems

Number of Processors

1

2 3.10

3 2.91

4 2.87

5 2.86

6 2.84

8 2.86

10 2.94

c) Nodal Displacements as System Level Design Variables, Parallel Subsystems

Number of Processors

Time to Complete Optimization (hr)
9.38

1

2 20.02 mill

3 9.02 min

4 7.01 min

5 6.41 min

6 6.36 min

8 6.25 min

10 6.13 min

d) Using Gauss Elimination to Replace System Level, Parallel Subsystems

Number of Processors

Time to Complete Optimization
6.60 hr

1

2 13.21 min

3 2.64 min

4 52.42 sec

5 21.28 sec

6 10.25 sec

8 4.61 sec

10 3.11 sec

Table 7. Average Individual System Level Runtime without Derivative Verification

Time to Complete Optimization
5.93 hr

System Design Variable Formulation

Polynomial Coefficients (Original)

Polynomial Coefficients (Parallel Subsystems)

Displacements
Gauss Elimination"

Average Runtime
4.59 min

5.11min

19.80 sec

6.70x 10 .2 sec

• Derivative verificationdoesnotapplytotheGausseliminationformulation,sotheruntimedoesnotchangesignificantly.



Table 8. Average Individual Subsystems Level Runtime without Derivative Verification

Number of Processors

Non-Parallel

1 2.85

2 3.32x10"

!.48x 10"

4

Average Runtime (sec)
2.72

7.27x 10 .2

5.77x 10 .25

6 4.31x102

8 3.78x 102

10 2.17x10 "2

Table 9. Runtimes Observed in 240-Element Truss Optimization without Derivative Verification

a) Polynomial Coefficients as System Level Design Variables_ Non-Parallel Subsystems

Time to Complete Optimization I Hr

b) Polynomial Coefficients as System Level Design Variables_ Parallel Subsystems
Number of Processors

10

Time to Complete Optimization (hr)
1.12

1.12

1.11

1.11

1.11

1.11

1.10

1.10

c) Nodal Displacements as System Level Design Variables, Parallel
Number of Processors

1

2 4.39

3 4.31

4 4.32

5 4.32

6 4.31

8 4.32

10 4.32

Subsystems

Time to Complete Optimization (min)
4.85

d) Using Gauss Elimination to Repl_
Number of Processors

1

2

3

4

5

6

8

10

ce System Level, Parallel Subsystems

Time to Complete Optimization (sec)
37.51

6.71

3.67

2.68

2.30

2.15

1.98

1.96



Table10. Percent Decrease in Overall Rtmtime

Number of Original Polynomial Displacements Gauss Elimination
Processors Coefficients

I 88170 88.02 98.77 99.82

2 63.92 78.04 99.15

4

5

6

8

10

61.74 52.18 97.68

61.33 38.42 94.88

61.13 32.64 89.20

61.03 32.29 79.00

61.59 30.85 57.12

62.65 29.43 36.94

References

1. A.G. Striz, T. Srivastava, and J. Sobieszczanski-

Sobieski, "An Efficient Methodology for
Structural Optimization", in: Structural

Optimisation, Proceedings of the ACSO'98 -
Australasian Conference on Structural

Optimization, Sidney, Australia, February 11-13,
1998, Oxbridge Press, 1998, Victoria, Australia,

pp. 259-266.

2. A.G. Striz, S. Sharma, T. Srivastava, and J.

Sobieszczanski-Sobieski, "Displacement Based
Multilevel Structural Optimization: Beams,
Trusses, and Frames", Proceedings of the 7 tb

AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and optimization,
St. Louis, Missouri, September 2-4, 1998, pp.
670-680.

3. S. Missoum, P. Hernandez, Z. Gtlrdal, and J.

Guillot, "A Displacement-based Optimization
for Truss Structures Subjected to Static and

Dynamics Constraints", Proceedings of the 7 'h

AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and optimization,
St. Louis, Missouri, September 2.4, 1998, pp.
681-690

4. A.G. Slriz, C. Plunkett, and J. Sobieszczanski-

Sobieski, "Parallel Processing on a Variant of
Displacement Based Multilevel Structural

Optimization," AIAA-99-1301-wip, 40 th AIAA/
ASME/ASCE/AHS/ASC Structures, Slructural

Dynamics, and Materials Conference, St. Louis,
Missouri, April 1999.

5. DOT User's Manual (4.20), Vanderplaats

Research and Development, Inc., Colorado
Springs, Colorado, 1995.

6. C.L. Plunkett, "New Developments in Displace-

ment Based Multilevel Structural Optimization",
M.S. Thesis, University of Oklahoma, Norman,
Oklahoma, 2001.

7. W. Gropp, E. Lusk, and A. Skjellum, Using
MPI: Portable Parallel Programming with the

Message-Passing Interface, The MIT Press,
Cambridge, Massachusetts, 1994.

8. P.E. Gill, W. Murray, M. Saunders, and M.
Wright, User's Guide for NPSOL (Version 4.0),

Technical Report SOL 86-2, January 1986,
Stanford University, Stanford, California.


